Hybrid LTE Unicast Broadcast

The Long Term Evolution (LTE) networks provides mobile users with perpetually increasing ubiquitous access to a rich selection of high quality multimedia. This work proposes a Hybrid Unicast Broadcast Synchronisation (HUBS) framework which works within the LTE standard to synchronously deliver multi stream video content by monitoring the radio bearer queues to establish a time lead or lag between broadcast and unicast streams. Since unicast and eMBMS share the same radio resources, the number of Sub-Frames allocated to the eMBMS transmission are then dynamically increased or decreased to minimise the average lead/lag time offset between the streams. Dynamic allocation showed improvements for all services across the cell, whilst keeping streams synchronised despite increased user loading.

Application Partitioning Framework in Mobile Cloud Computing

Application offloading is an emerging area focus towards leveraging the huge computation resources available in cloud to avail for the mobile. This research area is quite challenging due to heterogeneity of applications, mobile and cloud resources. Offload becomes even more complex when we take vulnerable nature of wireless communication into account. In our research, we formulated the offloading research problem in terms of contextual modelling of cloud, mobile, application and wireless network in terms of their parameters and then we discuss the feasibility of application partitioning and offloading by representing an application in the form of a graph. We use two application scenarios: ultra-high video coding and large-scale image retrieval.